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We examine different types of heterogeneous hydraulic conductivity fields to ascertain the basic structural
features that dominate the transport behavior. We contrast two approaches to the analysis, within the frame-
work of the continuous time random walk �CTRW�, considering recent simulations of particle transport in two
correlated flow fields to discern these key features. These flow fields are the steady-state solutions of Darcy
flow in systems with correlated distributions, P(K�x�), of hydraulic conductivity values K�x�. One approach
uses the organizational structure of the Lagrangian velocities determined from simulations to derive correlated
space-time distributions for particle tracking, which are used to fit simulated breakthrough curve �BTC� data.
These fits emphasize the ability to account for both early arrival times and late-time long tailing. The other
approach, in this paper, treats the simulated BTCs as “measurements” and uses a truncated power-law form of
��t�, the probability density function �pdf� of local transit times, in a partial differential equation form of
CTRW. Excellent fits to both data sets are obtained with a single value of �, the key parameter that charac-
terizes the nature of the dispersive transport. The value of � is derivable from the high � behavior of the pdf
histogram ���� �where � is the inverse velocity� of the Darcy field, which determines the late-time tail within
��t�. The quality of the two fits obtained herein with a physically derived parameter set is a probe of how
heterogeneous hydraulic conductivity fields with different types of correlation can affect the larger-scale
transport behavior. The features that give rise to a power-law tail of local transition times and a limit of the
time range for non-Fickian behavior dominate the transport. The correlation structures of the different P(K�x�)
play a secondary role compared to the spectrum of less frequent events �e.g., low velocity regions� that have a
large effect on the aggregate of median time transitions.
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I. INTRODUCTION

The characterization of highly disordered systems to en-
able the prediction of transport properties is an important
research area in a diverse number of fields �1�. A particularly
challenging type of disordered system is geological forma-
tions, which possess heterogeneity on multiple length scales.
The anomalous �or non-Fickian� transport of tracers in fluid
saturated geological formations indicates that effects of het-
erogeneities cannot be “averaged out” even on small scales.
A key question in the analysis of these complex systems is
what are the essential features that dominate the transport?
Specifically, how is the variety of heterogeneous structures
�e.g., different correlations� of these hydraulic conductivity
fields linked to the degree of non-Fickian transport?

It is now well known in the literature that such a hetero-
geneity leads to tracer breakthrough curves �BTCs; or first
passage time distributions� with power-law tailing �e.g.,
�2,3��. Several studies �e.g., �4–8�� have focused more spe-
cifically on the issue of discerning how specific types of
heterogeneity affect the non-Fickian transport behavior, e.g.,
a heavy-tailed distribution of increments in log-hydraulic
conductivity can yield a heavy-tailed distribution of log-
velocity increments �4�. Also, it has been shown that the
late-time slope of a BTC is influenced strongly by the pres-
ence of a high density of connected paths �as opposed to a
random array� in the underlying hydraulic conductivity field,
but is relatively insensitive to the variance of this field �8�.
Recent work with particle tracking �PT� models based on the
continuous time random walk �CTRW� approach has ana-
lyzed simulations based on the statistics of Lagrangian ve-

locities of Darcy flow; the underlying flow fields were based
on correlated distributions P(K�x�) of hydraulic conductivity
values K�x�, where P denotes a �e.g., lognormal� distribution
�9,10�. In this paper, we take the opportunity presented by
these distinct heterogeneous K�x� fields to reanalyze the
simulations. We employ a different CTRW-based method
that is based on an integro-partial differential equation �pde�
to glean further insight into the structure-transport relation-
ship.

The CTRW �11� provides a quantitative tool to incorpo-
rate distributions of local transition displacements and times
into a transport framework �2,3,12,13�. The CTRW is a gen-
eralization of the familiar random walk by inserting into each
step with displacement s a random time t drawn from a joint
probability density function �pdf� ��s , t�. The transport pro-
cess is portrayed as a sequence of these transition rates. Dis-
ordered systems characteristically have a broad distribution
of rates, and statistically rare transitions of relatively long
times and/or large displacements strongly affect the overall
transport. The CTRW framework is effective because it in-
corporates the full spectrum of these rates into the transport
equations.

In this framework, the challenge is to develop an accurate
physical model of ��s , t� for the different structures of disor-
dered systems. Fortunately a few features of ��s , t� have en-
abled an excellent comparison of theory to results of a wide
range of laboratory experiments, field observations, and
simulations �e.g., �3,14–21��. These features are the extent of
a power-law region �t−1−�, with 0���2, the onset of the
cutoff or transition region to ��2 �i.e., Fickian region�, and
the functional dependence of these regions on the system
disorder. The incorporation of these features into a complete
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form of ��s , t� �i.e., not just the limiting power-law depen-
dence�, together with other parameters in the transport equa-
tion, determines the nuances of the BTC and hence is crucial
to the analysis.

II. METHODS AND RESULTS

The main method used to solve the CTRW transport equa-
tions �3� has been to transform them into pde form and use
Laplace transformations L; we discuss this below. More re-
cently the use of PT has also proved to be powerful
�9,10,22,23�. Specifically, particle transport derived from
fluid flow in disordered media can be characterized statisti-
cally by �in general, coupled� distributions of transition
length and particle velocities �and hence transition times�.
There are trade-offs between the methods. Even though very
large statistical samples are needed for PT, one can work
directly with the distributions and avoid L−1 of the pde ap-
proach. For the PT, the incremental steps are s�N+1�=s�N�

+ς�N� and t�N+1�= t�N�+��N�, which are governed by a coupled
��s , t� �14,23� and can accommodate correlations between
increments �9,10�. One can also use a position-dependent
��s , t ;x� for nonstationary systems, as for the pde method
�24�. All of these features are included under the basic defi-
nition of CTRW as a random walk with transition times
drawn from a pdf.

In the PT approach, Le Borgne et al. �10� considered
two types of simulated heterogeneous porous media, charac-
terized by different correlated spatially varying hydraulic
conductivity fields P(K�x�). One type is a multilognormally
distributed random conductivity field with a broad range
of conductivities �variance of log-conductivity =9� and a
Gaussian correlation function as shown in Fig. 1. The second
type of field consists of preferentially connected high con-
ductivity zones, leading to strong localization of high veloc-
ity regions �25,26�, as shown in Fig. 2. The generated fields

have the same point distributions of hydraulic conductivity
values and the same two-point correlation, but the connected
field has more spatial organization. These two types of do-
mains, quite different in their permeability structures, are
used frequently in the hydrology literature as realistic repre-
sentations of geological media �25–28�. In �10�, a 512
	512 grid was employed, with no-flow horizontal bound-
aries and flow from left to right. Incompressible fluid flow
through the domains was described by the Darcy equation,
while particles in each realization were subjected to motions
governed by a highly idealized model. Particle trajectories
were prescribed by advancing each particle according to the
local advective �Darcy� flow field, together with an addi-
tional random diffusive component sampled from a Gaussian
distribution. Thus, flow and transport in the domain could be
treated as macroscopically one dimensional, with BTCs rep-
resenting particle arrivals along a vertical control plane at a
fixed distance from the inlet.

Le Borgne et al. �10� first solved for the velocity fields in
these two types of hydraulic conductivity fields to determine
the statistics of velocity correlations along a sequence of par-
ticle transitions. Particle migration was followed through the
domain to generate BTCs, which can be treated as measure-
ments, examining 100 realizations of each domain type to
obtain �ensemble� averaged transport behaviors �BTCs�. The
velocity correlation information was then used in a CTRW-
based PT algorithm. The analysis in �10� showed that the
incorporation of highly detailed information on the flow field
in the CTRW method, at the scale of individual particle tran-
sitions, enables fits to the “measured” BTCs that account for
both early arrival times and late-time long tailing.

We shall consider these measured BTCs by employing a
common pde form of the CTRW transport equations �Eqs.
�24�–�26� in Ref. �3��. For our purposes we use an approxi-
mation �which will be discussed below� of a decoupled
��s , t�= p�s���t� that yields

FIG. 1. �Color online� Example realization of a multilognormal
hydraulic conductivity �K� field �9�. The scale to the right shows
log10 K.

FIG. 2. �Color online� Example realization of a connected hy-
draulic conductivity �K� field �9�. The scale to the right shows
log10 K.
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�c�s,t�
�t

= − �
0

t

M�t − t���v� · �c�s,t�� − D�:��c�s,t���dt�.

�1�

where c�s , t� is the normalized concentration and M�t� is the
memory function whose L is

M̃�u� � t̄u
�̃�u�

1 − �̃�u�
, �2�

with �̃�u�=L���t�� and t̄ as a characteristic time. Here, v�

and D� are the first and second moments of p�s� divided by
t̄. A very useful form of ��t�, which captures simply the key
features discussed above, is the truncated power law �TPL�

��t� = N
exp�− t/t2�
�1 + t/t1�1+� , �3�

where

N = �t1�2
−� exp��2

−1�
�− �,�2
−1��−1, �4�

t1 and t2 are the limits of the power-law spectrum, �2
� t2 / t1, and 
�a ,x� is the incomplete gamma function �29�.
L of Eq. �3� is given by

�̃�u� = �1 + �2ut1��exp�t1u�
�− �,�2
−1 + t1u�/
�− �,�2

−1� .

�5�

The TPL form �3� of ��t� has been used successfully to ac-
count for many laboratory-based observations �3,30–33�, a
field observation �17�, and a behavior determined by pore-
network simulation �19�.

The solution of Eqs. �1�–�5� is contained in a publicly
available CTRW toolbox �34�. The approximation of the de-
coupled form of ��s , t� works well for a compact p�s� �see
discussion below� as demonstrated over a wide range of
length and time scales and for diverse types of heterogene-
ities �3�. It also works well for the present data of a corre-
lated permeability field, which indicates that the time distri-
bution ��t� is the essential feature. The procedure considered
here uses the solution c�s , t� to calculate the first arrival
times, given by the BTC, as a function of the parameters �,
t1, and t2 of Eq. �3�—most importantly �—and the param-
eters v� and D� in the �one-dimensional� Fokker-Planck op-
erator in Eq. �1�, which are determined by the experimental
settings. To optimize the CTRW model parameters, numeri-
cal solutions were coupled to an error minimization tech-
nique that compared the solution to the simulated BTCs de-
termined in �9,10�. More specifically, a MATLAB algorithm
based on the Nelder-Mead method was used to minimize a
subjective function defined as the sum of the errors between
the measured and predicted values. The algorithm yielded
parameters that produced good agreement between the model
and data; final minor parameter value adjustments were car-
ried out manually.

The results are shown in Figs. 3 and 4 for the two types
�multilognormal and connected �Figs. 1 and 2, respectively��
of hydraulic conductivity fields. Simply stated, the essential
features of the BTCs are captured by a single value of � and

by a single set of physically consistent and constrained �by
the experimental parameters� values of the other parameters.
The value of � is derivable from the histogram ���� �with
�=1 /v� of P(K�x�) as in other studies, e.g., �17�. The esti-
mated values of v� are in accord with the average fluid ve-
locities that can be discerned from the calculated velocity
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FIG. 3. First passage time distribution at a distance of 100 ele-
ments from the inlet multilognormal field, based on numerical
simulations of particle tracking �10�, and a fit with the CTRW using
a TPL ��t�. Solid curve, numerical simulations; dashed curve,
CTRW fit. The simulation curve here shows the ensemble averaged
transport behavior based on 100 realizations of the underlying con-
ductivity field. Parameters of the CTRW-TPL fit: v�=2.78, D�

=0.49, �=1.12, log10�t1�=0.15, log10�t2�=3.6. Arbitrary units on
v�L /T�, D�L2 /T�, t1�T�, and t2�T�.
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FIG. 4. First passage time distribution at a distance of 100 ele-
ments from the inlet connected field, based on numerical simula-
tions of particle tracking �10�, and a fit with the CTRW using a TPL
��t�. Solid curve, numerical simulations; dashed curve, CTRW fit.
The simulation curve here shows the ensemble averaged transport
behavior based on 100 realizations of the underlying conductivity
field. Parameters of the CTRW-TPL fit: v�=7.4, D�=1.8, �=1.12,
log10�t1�=0.15, log10�t2�=3.7. Arbitrary units on v�L /T�, D�L2 /T�,
t1�T�, and t2�T�.
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fields �Figs. 1�b� and 1�d� of �9�� in the two domains �noting
also that in general the particle velocity v��v, the average
fluid velocity; see �3��. Moreover, the v� and D� values for
the multilognormal field are smaller than those for the con-
nected field, in agreement with P(K�x�) which yields a ve-
locity field for the multilognormal case that has a fewer con-
nected higher velocity paths than the connected field.

The fits in Figs. 3 and 4 employ the same value of t1,
while the value of t2 is somewhat smaller for the BTC in
the multilognormal hydraulic conductivity field, indicating a
transition to Fickian transport that is faster than for the con-
nected field. The t2 values are compatible with the value �
�1, which indicates that relative to the overall particle resi-
dence times, the domains are not highly heterogeneous �3�.
The parameter t1 simply sets the time scale and is the ratio of
the characteristic displacement to the velocity, t1= s̄ /v�. The
value of s̄=c�, where c�1 and � is the correlation length; c
is approximately 0.5 and 1.3, respectively, for the multilog-
normal and connected hydraulic conductivity fields �10�. In
terms of robustness of the fits, changing log10 t2 values by,
e.g., �0.1, yields small variations in the tail of the BTC. The
other parameters �including �� display similar sensitivity to
the fits, affecting early and peak arrival times in the BTCs.

III. DISCUSSION

The strength of the CTRW theory of transport in a disor-
dered system with statistical stationarity resides in its capac-
ity to include the most salient aspects of the interplay be-
tween different magnitudes and encounters of transitions
within a broad spectrum. The basic output of most probabi-
listic theory is the �normalized� particle concentration c�s , t�,
which is an ensemble average of all the configurations of the
system. An immediate concern then arises: what is the vari-
ance of this ensemble average, i.e., what fluctuations are be-
ing neglected �3�? In the context of CTRW one can try to
optimize ��s , t� to include the important fluctuations. As a
prime example, the typical long �power-law� tail at large
times is associated with the relatively rare occurrence of low
velocity regions, which tend to be uncorrelated from each
other �3�. These regions provide long transition times, which
can be comparable to a collection of shorter time steps pro-
duced by the higher velocities, hence, the importance of
these fluctuations. From our analysis of the simulated BTCs
�10� one can glean that � is a good measure of the statistics
of the encounters with the long transition times present in
those domains. One can see clearly the nature of the problem
of transport in the Darcy flow in the K�x� fields of Figs. 1
and 2. The point distribution of K values determines the form
of ����, which can be translated into a ��t�. The focus
should thus be on the P(K�x�), ���� relationship. The high
K�x� correlation structures in Figs. 1 and 2 are a secondary
perturbation on the significant velocity spectrum. Indeed, the
velocity distributions in the two domains derived from Figs.
1 and 2 were found to be very similar �9�. If p�s ;v� �see
below� is compact, the transport is insensitive to the small �
part of ����.

To reiterate, it has been shown that if the pdf of displace-
ments is compact, then the spectrum of high velocities,

whether correlated or not, produces short transition times
�23�. In this case the decoupled form of ��s , t� is satisfactory.
However, if p�s� is Lévy-like, i.e., it has a power-law depen-
dence on s, then the transport is sensitive to the high velocity
part of the spectrum ����, with �=1 /v. In this case, one
needs a fully coupled ��s , t� because the small � allows a
large displacement within the operational time window �23�.
In a random fracture network one has a natural pdf for s, the
distribution of fracture fragments �14�, via a p�s ;v�. In a
porous medium the choice for p�s� is much more subtle.
There is no obvious structural arrangement as in a random
fracture network except for the pore network �19�. A natural
choice for displacements relates to the dynamic aspects of
the transport in a scattering medium—the velocity correla-
tion length ��v�. If the distribution of ��v� is compact then
our approximation holds well. In other cases one might need
a coupled ��s , t�.

For example, in the Lagrangian simulation approach �9�
the arbitrary discretization into steps of length x can inter-
fere with the extent of displacement ��v� at each selection of
v. The analysis in �9� in fact demonstrates that the neglect of
information on the velocity correlation between the transi-
tions of length x—which is linked particularly to the high
velocity paths—leads to a poor fit of the early time portion of
the BTC. One choice for p�s� �here now used for �s��, which
is easily parametrized around the mean of the velocity cor-
relation, is p�s�=N(��v� ,�), where N�s̄ ,� is a Gaussian
in the variable s, with mean s and standard deviation 
about the mean. This pdf is part of the coupled ��s , t�
=sd−1p�s����� ��t/s�

s , where the angular part of v is contained
in ���� �23�. The choice of s̄=��v�, which is independent of
the grid size, decreases the correlation between steps, in con-
trast to the correlations induced by the x displacements.
The arbitrary discretization x could serve as a means to
determine the natural displacement ��v�.

In general, the interpretation of simulations associated
with the Lagrangian simulation approach is highly sensitive
to the nature of the spatial and temporal discretizations that
are employed. Moreover, such detailed and computationally
intensive simulations are not readily available; it is in prac-
tice very difficult to obtain a priori the parameter values of
��s , t�, and correlations of these transitions with previous
steps, in laboratory materials and/or field sites. One usually
has to employ empirical best fits to the data and use inde-
pendent measurements to establish consistency and/or pre-
dictions.

The pde approach applied in this paper has the merit of
providing important insights into the meaning of the CTRW
parameters chosen to give the best fit, in addition to not
requiring detailed information on the underlying hydraulic
conductivity and/or velocity fields. One such insight is de-
rived from the fits of both BTCs in Figs. 3 and 4; these fits
have the same value of �, indicating that the different high
permeability pathways do not modify the statistics of the
arrival times. These parameters provide agreement with ad-
ditional statistical data of the simulations. Over only 2.5 de-
cades in time, the second centered moment of the plume �2

“exponent” changes from 2 to 1.3 �9�. The range of the time
span limits the power-law dependence. In our evaluation of
�2 over the entire range of the BTC, the exponent changes
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from 1.8 (based on the asymptotic ���t�� t−1−�� formula
�2� t3−� for 1���2) to lower values with increasing time,
i.e., an approach toward 1.0 due to the effect of the transition
to Fickian transport as evident in the BTC. There is a satis-
factory overlap in the exponent values.

The beguilingly simple form of Eq. �3� captures some
very subtle features of anomalous transport that are not
readily available. The parameter t2 determines the transition
to Fickian behavior. A recent study �33� has shown how
changing the time window of the experimental observation,
by changing the particle velocity, shifts the time region of
��t� that controls the nature of the transport. In some cases
one can calculate t2 �19�, which was determined on the pore
scale by molecular diffusion.

In general, in the absence of detailed information of K�x�,
as is the case in many of the studies in the literature using
CTRW, one can have confidence that the parameters used in
the fit are a meaningful expression of the important fluctua-
tions of transport in the Darcy velocity field generated by
K�x�. In the present case, one can use the result of the fits in
Figs. 3 and 4 that specify Eq. �3� and make predictions, e.g.,
to examine the consequence of reducing the mean flow �cf.
�33��.

IV. CONCLUSION

The results presented here—an excellent fit of the simu-
lation data with a single value of � and other physically
consistent and constrained values—imply that the distribu-
tion of local transition times, derived from a statistically suf-
ficient disorder of the medium—promoting a broad range of

different velocity locales—is the dominant factor controlling
the transport. This spectrum of times as the mechanism for
transport in disordered systems occurs in many different con-
texts, e.g., �35�. The statistical similarity of the two P(K�x�)
is generated by the same point distributions of hydraulic con-
ductivity values and the same two-point correlation. The ex-
tent of the disorder determines both � and t2, the latter of
which in this case influences the BTC tail in Figs. 3 and 4.
Significantly, these results cast doubt on the ability to discern
how heterogeneous hydraulic conductivity fields with differ-
ent types of correlation can affect the larger-scale transport
behavior. These results also exemplify the difficulty in at-
tempting to identify different heterogeneous structures of hy-
draulic conductivity fields solely on the basis of BTC analy-
sis. We find that a compact p�s� is adequate, which implies
that the spectrum of high velocities—whether correlated or
not—plays a secondary role. It is to be emphasized that the
hydraulic conductivity fields studied herein are generated by
two probability distributions P(K�x�) that promote a high
degree of statistical stationarity �assuming modest correla-
tion lengths�. In natural geological formations the heteroge-
neity can be considerably more complicated �e.g., with long-
range correlations� and features dominating the transport
could involve the use of more extended theoretical aspects
such as a position-dependent ��s , t ;x� �24�.
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